Bipartite graphs with close domination and k-domination numbers

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Total $k$-Rainbow domination numbers in graphs

Let $kgeq 1$ be an integer, and let $G$ be a graph. A {it$k$-rainbow dominating function} (or a {it $k$-RDF}) of $G$ is afunction $f$ from the vertex set $V(G)$ to the family of all subsetsof ${1,2,ldots ,k}$ such that for every $vin V(G)$ with$f(v)=emptyset $, the condition $bigcup_{uinN_{G}(v)}f(u)={1,2,ldots,k}$ is fulfilled, where $N_{G}(v)$ isthe open neighborhood of $v$. The {it weight} o...

متن کامل

The minus k-domination numbers in graphs

For any integer  ‎, ‎a minus  k-dominating function is a‎function  f‎ : ‎V (G)  {-1,0‎, ‎1} satisfying w) for every  vertex v, ‎where N(v) ={u V(G) | uv  E(G)}  and N[v] =N(v)cup {v}. ‎The minimum of ‎the values of  v)‎, ‎taken over all minus‎k-dominating functions f,‎ is called the minus k-domination‎number and is denoted by $gamma_k^-(G)$ ‎. ‎In this paper‎, ‎we ‎introduce the study of minu...

متن کامل

the minus k-domination numbers in graphs

‎for any integer $kge 1$‎, ‎a minus $k$-dominating function is a‎ ‎function $f‎ : ‎v (g)rightarrow {-1,0‎, ‎1}$ satisfying $sum_{win‎‎n[v]} f(w)ge k$ for every $vin v(g)$‎, ‎where $n(v) ={u in‎‎v(g)mid uvin e(g)}$ and $n[v] =n(v)cup {v}$‎. ‎the minimum of‎‎the values of $sum_{vin v(g)}f(v)$‎, ‎taken over all minus‎‎$k$-dominating functions $f$‎, ‎is called the minus $k$-domination‎‎number and i...

متن کامل

The Signed k-Domination Numbers In Graphs

For any integer k ≥ 1, a signed (total) k-dominating function is a function f : V (G) → {−1, 1} satisfying w∈N [v] f(w) ≥ k ( P w∈N(v) f(w) ≥ k) for every v ∈ V (G), where N(v) = {u ∈ V (G)|uv ∈ E(G)} and N [v] = N(v)∪{v}. The minimum of the values ofv∈V (G) f(v), taken over all signed (total) k-dominating functions f, is called the signed (total) k-domination number and is denoted by γkS(G) (γ...

متن کامل

Domination in bipartite graphs

The domination number γ(G) of a (finite, undirected and simple) graph G = (V,E) is the minimum cardinality of a set D ⊆ V of vertices such that every vertex in V \ D has a neighbour in D. This parameter is one of the most well-studied in graph theory and the two volume monograph [9, 10] provides an impressive account of the research related to this concept. Fundamental results about the dominat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Open Mathematics

سال: 2020

ISSN: 2391-5455

DOI: 10.1515/math-2020-0047